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ARTICLE INFO  ABSTRACT 

  

 

 

This study analyzes the daily average temperature data of Delhi city 

from 2013 to 2017 using the Autoregressive Integrated Moving 

Average (ARIMA) model to model and predict temperature trends. 

The temperature data processed in this study is non-stationary, so 

differentiation is applied to achieve stationarity. Two ARIMA 

models were evaluated: ARIMA (1,1,1) and ARIMA (1,1,1)(1,0,1). 

The ARIMA (1,1,1) model is effective in capturing short-term 

patterns, while the ARIMA (1,1,1)(1,0,1) model performs better in 

handling seasonal components. The findings show that the ARIMA 

(1,1,1)(1,0,1) model provides more accurate prediction results by 

accounting for seasonal fluctuations in temperature data. This 

research is expected to serve as a reference for preventive measures 

related to temperature changes, as temperature variations can affect 

public health, infrastructure, and quality of life in rapidly growing 

cities like Delhi. Understanding temperature trends and making 

accurate predictions helps in city planning, resource management, 

and developing adaptation strategies for climate change, which is 

crucial for mitigating negative impacts and planning for a more 

sustainable future. 
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INTRODUCTION  

 

As the capital of India and one of the fastest-growing cities in the world, Delhi faces significant 

challenges related to climate change and rapid urbanization. Temperature changes in Delhi can 

impact public health, infrastructure, and overall quality of life. This article utilizes daily temperature 

data from the "Daily Climate Time Series Data" dataset provided by Sumanth Rao, accessible via 

Kaggle, covering the period from 2013 to 2017. The dataset provides information on daily 

maximum, minimum, and average temperatures, allowing for in-depth analysis of temperature 

trends, seasonal patterns, and temperature variations in the city. A study by Kumar and Garg (2018) 

shows that the urban heat island effect in Delhi exacerbates the impacts of climate change, while 
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Reddy and Reddy (2016) emphasize the importance of understanding temperature trends for better 

urban planning. Kothawale and Rupa Kumar (2011) also note significant changes in temperature 

patterns in India, which need to be considered in the context of urbanization. By analyzing this data, 

it is hoped that valuable insights can be gained for city planning, resource management, and climate 

change adaptation strategies in Delhi. 

 

The Autoregressive Integrated Moving Average (ARIMA) method is used in this analysis to model 

and predict temperature trends based on historical data. ARIMA, developed by Box and Jenkins 

(1976), is an effective technique for forecasting time series data by combining autoregressive, 

differencing, and moving average elements. This method is suitable for capturing patterns in 

temperature data, such as long-term trends and seasonal fluctuations. Research by Hyndman and 

Athanasopoulos (2018) shows that ARIMA can provide accurate forecasts for time series data with 

trends and seasonality, making it a useful tool in urban climate planning and management. By 

applying the ARIMA method to Delhi's temperature data, this analysis aims to provide deeper 

insights into temperature trends and assist in planning responses to climate change. 

 

Several studies have demonstrated the effective application of ARIMA models in predicting climate 

variables in various contexts. For example, Dimri et al. (2020) used the Seasonal ARIMA 

(SARIMA) approach to analyze temperature and precipitation, finding that the model can effectively 

capture both seasonal fluctuations and long-term trends. Meanwhile, Yan et al. (2022) applied 

ARIMA to analyze flood risk in reservoirs due to climate change, providing important insights into 

climate prediction-based flood risk management. In the data-poor Mediterranean region, Al Sayah 

et al. (2021) utilized ARIMA in conjunction with remote sensing to evaluate climate change, 

demonstrating how the model can be adapted to data-limited conditions. 

 

Rosmiati et al. (2021) developed an ARIMA model to strengthen marine climate prediction skills, 

especially in the context of science education for pre-service teachers. In the economic context, Xu 

et al. (2024) used ARIMA to analyze the impact of climate change on decision-making in the 

insurance industry, emphasizing the importance of data-driven prediction for risk assessment. In 

addition, Deshmukh et al. (2024) compared the performance of ARIMA with LSTM deep learning 

models in predicting climate parameters in the Vidarbha region of India, showing that while ARIMA 

excels in linear and seasonal patterns, LSTM is more accurate in capturing more complex patterns. 

 

These studies show that ARIMA models are not only effective in predicting climate trends but also 

make important contributions to decision-making in various sectors, including risk management, 

education, and economics. This shows the relevance of using ARIMA models in this study to predict 

temperature trends in Delhi. Based on the previous explanation, the researcher aims to analyze the 

existing temperature data of Delhi using the ARIMA model. The objective of this study is to 

understand the temperature trends in Delhi and the patterns generated. The results of this research 

could be used to examine the stationarity of temperature patterns in Delhi. 

 

 

METHOD 

 

The research stages are illustrated in Figure 1, which provides a detailed overview of the process 

flow. The figure outlines each step, from literature review, data collection, and data analysis. This 
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visual representation aims to clarify the research workflow and highlight the logical sequence of 

activities undertaken in this study. 

 

 
Figure 1. Research Steps 

Source : Researcher (2024) 

 

1. Literature Review 

At this stage, the researcher conducted a comprehensive literature review on the application and 

implementation steps of the ARIMA model. The review focused on understanding the 

theoretical foundation, parameter estimation, and best practices for applying ARIMA in time 

series analysis. Additionally, this stage involved evaluating the suitability of the ARIMA model 

for analyzing temperature trends in Delhi, considering its ability to handle non-stationary data 

and seasonal variations. The insights gained from the literature review were crucial in guiding 

the model selection and adaptation process for this research. 

 

The Autoregressive Integrated Moving Average (ARIMA) model is one of the well-known time 

series model families and was originally used in economics (Box & Jenkins, 2015). This model 

predicts future values in time series data using a combination of three main components: 

Autoregressive (AR), Integrated (I), and Moving Average (MA). Each of these components is 

represented by a parameter in the ARIMA model denoted as ARIMA(p, d, q), where: 

 

p: Order of the autoregressive component, 

d: Degree of differencing required to achieve stationarity, 

q: Order of the moving average component. 

 

The ARIMA model can be expressed in the following equation: 

1 1 2 2 1 1 2 2t t t p t p t t t q t qy c y y y     − − − − − −= + + ++ + + + ++ò ò ò ò  

Where: 

ty  is the actual value at time tt, 

c is a constant, 

1 2, , ,  p   are the autoregressive coefficients, 

tò  is the error term at time tt, 

1 2, , ,  q    are the moving average coefficients, 

1 2, ,t t− − ò ò are the error term values at the previous lag. 

 

The autoregressive component measures the relationship between the current value and the 

previous value at a given lag. This component is represented by the parameter p, which indicates 

how many lags are used in the model. For example, in AR(1), only one lag is considered: 

1 1t t ty c y −= + +ò  
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The integrated component indicates how many times the data needs to be differentiated to 

achieve stationarity. Differentiation is done by subtracting the previous value from the current 

value, and this is represented by the parameter d. For example, if the data needs to be 

differentiated once, then: 

1t t ty y y − = −  

 

The moving average component takes into account the dependence between the current value 

and the error at the previous lag. This component is represented by the parameter q, which 

indicates how many error lags are considered in the model. For example, in MA(1), only the 

error at the first lag is used: 

1 1t t ty c  −= + +ò ò  

 

In the application of the ARIMA model, the Box-Jenkins method is used for systematic model 

identification, estimation, and validation. This process includes : 

 

1. Identification: Determining the optimal values for the parameters p, d, and q based on 

the ACF and PACF plots. 

2. Estimation: Estimation of the model coefficients using statistical estimation methods, 

such as least squares or maximum likelihood estimation. 

3. Validation: Evaluating the model through residual analysis to ensure that the model 

residuals do not show significant autocorrelation. 

 

The ARIMA model has high flexibility and has been widely applied in various fields, such as 

epidemiology (Alabdulrazzaq et al., 2021), climatology (Krispin, 2019), and economics 

(Hamilton, 2020), making it suitable for predicting time series trends in this study. 

 

2. Data Collection 

In this phase, the researcher gathered temperature data from Kaggle, specifically focusing on 

the average temperature in Delhi, India. To create a comprehensive dataset, the researcher 

combined multiple sources of average temperature data available on Kaggle into a single, 

unified dataset. 

 

3. Data Analysis 

At this stage, the researcher imported the temperature data obtained from Kaggle into MiniTab 

for further analysis. MiniTab, a powerful statistical software, is widely used for data analysis 

and problem-solving across various fields, such as business, industry, and research. It is 

designed to assist users in performing a wide range of statistical analyses, from basic descriptive 

statistics to complex predictive modeling. In this study, MiniTab was utilized to analyze trends, 

evaluate model performance, and interpret results, enabling the researcher to make informed 

decisions based on the statistical outputs. 

 

 

RESULTS AND DISCUSSION 

 

The first step involves observing and analyzing the Initial Data Plot generated by MiniTab. This step 

is essential for understanding the general patterns, trends, and potential seasonality present in the 

data. The plot provides a visual representation of the average temperature over time, enabling the 

researcher to identify key characteristics such as trend direction, fluctuations, and any apparent 

anomalies. The initial analysis helps in determining the appropriate model adjustments needed for 

further statistical evaluation. Below is the Initial Data Plot generated by MiniTab. 
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Figure 2. Plot Data 

Source : Data processing (2024) 

 

In Figure 2, the data clearly exhibits seasonal characteristics, demonstrated by the relatively regular 

repeating pattern observed each year, specifically at lag 12. This indicates the presence of a seasonal 

component in the temperature trends, making it necessary to account for seasonality in the modeling 

process. Following this observation, an analysis of data stationarity is performed, focusing on 

whether the mean, variance, and autocorrelation structure of the series remain constant over time. 

Achieving stationarity is essential for accurate modeling with the ARIMA framework, as it relies on 

this assumption to effectively capture the underlying patterns in the data. 

 

To assess stationarity, the data is processed to generate Autocorrelation Function (ACF) plots and 

Box-Cox transformation plots. The ACF plot helps identify any persistent correlation at different 

lags, while the Box-Cox transformation evaluates potential adjustments for stabilizing variance. The 

result of the ACF data processing is displayed in Figure 3. 

 

 
Figure 3. ACF Plot 

Source : Data processing (2024) 
 

Based on Figure 3, the ACF plot exhibits a slow decay towards zero (Dying Down), which indicates 

that the data is not stationary. This gradual decline suggests the presence of a trend or autocorrelation 

over time, signaling that the series does not maintain constant variance. Additionally, the ACF plot 

reveals that the first 2/3 of the lags fall outside the confidence interval, further confirming that the 

data is not stationary in terms of the mean. To address potential non-stationarity in variance, a Box-

Cox transformation is applied. This transformation aims to stabilize the variance and make the series 

more suitable for ARIMA modeling. The results of the Box-Cox plot analysis are presented in Figure 

4. 
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Figure 4. Box-Cox Plot 

Source : Data processing (2024) 
 

The condition for data to be stationary in variance, according to the Box-Cox method, is to have a 

Rounded Value (λ) of 1. However, as seen in Figure 4, the Rounded Value is 0.81, indicating that 

the data is not stationary in terms of variance. This suggests that the series exhibits non-constant 

variance, which can affect the accuracy of the ARIMA model if not properly addressed. 

 

To handle this issue, a Variance Stabilizing Transformation (VST) was applied to the data. This 

transformation aims to reduce variance fluctuations and bring the data closer to stationarity. The 

Box-Cox test results after performing one round of VST are presented below, showing the adjusted 

λ value and its impact on the variance of the series. 

 
Figure 5. Box-Cox Plot of VST 1 

Source : Data processing (2024) 
 

Based on Figure 5, the Rounded Value is now 1, indicating that the data has become stationary in 

terms of variance after applying the Variance Stabilizing Transformation (VST). This adjustment 

ensures that the variance remains constant over time, making the data more suitable for ARIMA 

modeling. 

 

When the data is stochastic and not stationary in terms of the mean, the differencing process is 

applied. In the ARIMA(p,d,q) model, this process determines the value of “d”, which represents the 

number of differencing operations required to achieve stationarity in the mean. The value of "d" is 

established based on how many times the differencing must be applied until the resulting data shows 

no significant autocorrelation, confirming that it is now stationary in terms of the mean. 
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Figure 6. ACF Plot  

Source : Data processing (2024) 
 

In Figure 6, the ACF plot of the data after one round of differencing shows that the ACF is significant 

at lag 1, indicating that there is still some level of autocorrelation at this lag. This suggests that the 

differencing has helped in achieving partial stationarity, but there may still be dependencies that 

need to be addressed by the autoregressive components in the ARIMA model. 

 

 
Figure 7. ACF Plot 

Source : Data processing (2024) 
 

In Figure 7, the PACF plot of the data after one round of differencing also shows that the PACF is 

significant at lag 1, indicating a strong correlation at this lag. This observation suggests the potential 

inclusion of an AR(1) component in the final ARIMA model, as it captures the immediate 

dependencies in the data that persist even after differencing. Both plots confirm that one round of 

differencing has effectively reduced non-stationarity in the mean, allowing the ARIMA model to be 

fine-tuned with appropriate p, d, and q parameters. 

 

Table 1. Final Estimates of Parameters 

Type Coef SE Coef T-Value P-Value 

AR 1 0.5859 0.0478 12.25 0.000 

SAR 12 0.727 0.243 2.99 0.003 

MA 1 0.8134 0.0342 23.82 0.000 

SMA 12 0.686 0.257 2.67 0.008 

Constant 0.00025 0.00109 0.23 0.815 

Source : Data processing (2024) 
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Table 2. Residual Sums of Squares 

DF SS MS 

1455 729.256 0.501207 

Source : Data processing (2024) 

 

Table 3. Modified Box-Pierce (Ljung-Box) Chi-Square Statistic 

Lag 12 24 36 48 

Chi-square 14.51 32.32 57.26 72.78 

DF 7 19 31 43 

P-Value 0.043 0.029 0.003 0.003 

Source : Data processing (2024) 

 

As discussed in Figure 2, the data exhibits seasonal characteristics with a significant pattern at lag 

12, indicating the need for a seasonal ARIMA model. During the differencing process, it was 

observed that both the PACF and ACF remained significant at lag 1 after one round of differencing, 

leading to the selection of the ARIMA(1,1,1) model for the non-seasonal component. No 

differencing was applied to the seasonal component, resulting in the final model being 

ARIMA(1,1,1)(1,0,1). 

 

The estimation results calculated using MiniTab software are presented in Tables 1, 2, and 3. The 

coefficients of the model components are detailed in Table 1, the AR(1) coefficient is 0.5859 with a 

standard error of 0.0478, yielding a t-value of 12.25 and a p-value of 0.000, indicating that the AR 

term is highly significant. The SAR(12) coefficient is 0.727 with a standard error of 0.243, resulting 

in a t-value of 2.99 and a p-value of 0.003, confirming the significance of the seasonal autoregressive 

term. The MA(1) coefficient is 0.8134 with a standard error of 0.0342, producing a t-value of 23.82 

and a p-value of 0.000, which also demonstrates strong significance. The SMA(12) coefficient is 

0.686 with a standard error of 0.257, giving a t-value of 2.67 and a p-value of 0.008, indicating that 

the seasonal moving average term is statistically significant. The constant term is 0.00025 with a 

standard error of 0.00109, yielding a t-value of 0.23 and a p-value of 0.815, suggesting that it is not 

statistically significant. 

 

The analysis of variance (ANOVA) results are shown in Table 2, where the degrees of freedom (DF) 

is 1455, the sum of squares (SS) is 729.256, and the mean square (MS) is 0.501207. This indicates 

a good fit of the model to the data, as the residual variance is relatively low. The Ljung-Box test 

results in Table 3 assess the adequacy of the model by testing the independence of residuals at lag 

12, the Chi-square value is 14.51 with DF 7 and a p-value of 0.043, indicating marginal significance. 

At lag 24, the Chi-square value is 32.32 with DF 19 and a p-value of 0.029, suggesting that some 

autocorrelation remains in the residuals. At lags 36 and 48, the Chi-square values are 57.26 and 

72.78, respectively, with p-values of 0.003 at both lags, which indicates significant autocorrelation. 

These results suggest that while the ARIMA(1,1,1)(1,0,1) model effectively captures both the non-

seasonal and seasonal components, some autocorrelation remains in the residuals at higher lags. This 

suggests potential areas for model refinement, such as incorporating additional seasonal terms or re-

evaluating differencing strategies. 

 

 

CONCLUSIONS 

 

Based on the research conducted, it can be concluded that the initial data obtained from Kaggle is 

non-stationary, necessitating the use of a Variance Stabilizing Transformation (VST) to achieve 

variance stationarity. After the transformation, the chosen ARIMA model for analysis was 

ARIMA(1,1,1), with an additional seasonal component that did not require differencing, resulting 

in the final model ARIMA(1,1,1)(1,0,1). This model effectively captured the average temperature 
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trends in Delhi, addressing both short-term patterns and seasonal components. Several 

recommendations are proposed for future research. First, the data used in this study was solely 

obtained from Kaggle. It would be beneficial to incorporate more recent field data to provide results 

that are more relevant to current temperature conditions. Second, in addition to the ARIMA method, 

it is advisable to explore other methods to diversify the analysis of average temperature trends, thus 

offering a broader understanding of temperature patterns in Delhi. 
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