Aspect-Based Sentiment Analysis of Tumpak Sewu Waterfall Tourist Reviews Using the Naive Bayes Classifier (NBC) Method

Authors

  • Maysas Yafi Urrochman Institut Teknologi dan Bisnis Widya Gama Lumajang
  • Hasyim Asy’ari Institut Teknologi dan Bisnis Widya Gama Lumajang
  • Abdur Ro’uf Institut Teknologi dan Bisnis Widya Gama Lumajang

DOI:

https://doi.org/10.30741/jid.v4i1.1758

Keywords:

Tumpak Sewu Waterfall, Visitor Sentiment Analysis, Google Maps, NBC

Abstract

With the increasing popularity of Tumpak Sewu Waterfall, the volume of visitor reviews on Google Maps continues to grow. These reviews contain valuable insights into tourists’ experiences; however, conducting an in-depth manual analysis is inefficient. This study aims to perform aspect-based sentiment analysis on visitor reviews of Tumpak Sewu Waterfall using the Naive Bayes Classifier (NBC) method. This approach enables the classification of sentiments positive, negative, and neutral based on specific aspects such as facilities, accessibility, and natural scenery. Review data were collected from online platforms and processed through stages of text preprocessing and feature extraction before being trained using the NBC model. The results show that the model effectively classifies review sentiments with a high level of accuracy and provides detailed insights into which aspects most influence visitor satisfaction. These findings not only demonstrate the effectiveness of the Naive Bayes Classifier in aspect-based sentiment analysis tasks but also offer data-driven strategic recommendations for tourism managers to enhance service quality and improve visitor experience in the future.

References

Al Rasyid, R., & Ningsih, D. H. U. (2024). Penerapan Algoritma TF-IDF dan Cosine Similarity untuk Query Pencarian Pada Dataset Destinasi Wisata. Jurnal JTIK (Jurnal Teknologi Informasi Dan Komunikasi), 8(1), 170–178.

Arianto, D., & Budi, I. (2022). Analisis Sentimen Berbasis Aspek dan Pemodelan Topik pada Candi Borobudur dan Candi Prambanan. MULTINETICS, 8(2), 141–150.

Assiva, M. A. (2024). Analisis Sentimen Terhadap Pariwisata di Kabupaten Grobogan Berbasis Orange Menggunakan Naive Bayes. Innovative: Journal of Social Science Research, 4(6), 2351–2359.

Baihaqi, G. F. … Hanggara, B. T. (2022). Analisis Sentimen Wisata Alun-Alun Kota Batu menggunakan Algoritma Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 6(12), 6010–6018.

Hizham, F. A. … Urrochman, M. Y. (2024). Sentiment Analysis Of Ijen Crater Reviews Using Na{"i}ve Bayes Classification And Oversampling Optimization. Sistemasi: Jurnal Sistem Informasi, 13(5), 2090–2103.

Hizham, F. A. … Qori’atunnadyah, M. (2024). Uji Klasifikasi Algoritma Naive Bayes Classification dalam Analisis Sentimen Ulasan Puncak B29 Lumajang. Jurnal Ilmiah Komputer, 20(1), 361–370.

Pratama, Y. T. … Setiawan, N. Y. (2018). Analisis Sentimen Opini Pelanggan Terhadap Aspek Pariwisata Pantai Malang Selatan Menggunakan TF-IDF dan Support Vector Machine. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(12), 6244–6252.

Putra, B. F. R. … Putra, P. B. A. A. (2024). ANALISIS SENTIMEN BERBASIS ASPEK PADA TEMPAT WISATA DI KALIMANTAN TENGAH DENGAN MEMANFAATKAN MODEL DEEP LEARNING. Journal of Information Technology and Computer Science, 4(3), 200–211.

QORITA, A. K. (2022). Analisis Sentimen Berbasis Aspek Pada Ulasan Tempat Wisata Diy.

Wijayanto, S. … Fathoni, M. Y. (2023). Analisis Sentimen Berbasis Aspek pada Layanan Hotel di Wilayah Kabupaten Banyumas dengan Word2Vec dan Random Forest. Jurnal Informatika: Jurnal Pengembangan IT, 8(1), 1–3.

Trismanto, T. (2018). Ambiguitas dalam bahasa Indonesia. Bangun Rekaprima, 4(1), 42–48.

Wulandari, D. A., Widagdo, A., Shafira, H., Maulida, A., Wardani, R. W., Sarnita, S., & Rahmawati, A. (2025). Analisis Penerapan Strategi Pembelajaran Bilingual pada Video Praktik Pembelajaran di Sekolah Dasar. Jurnal Inovasi Penelitian Ilmu Pendidikan Indonesia, 177–183.

Downloads

Published

2025-10-31

How to Cite

Urrochman, M. Y., Asy’ari, H., & Ro’uf, A. (2025). Aspect-Based Sentiment Analysis of Tumpak Sewu Waterfall Tourist Reviews Using the Naive Bayes Classifier (NBC) Method. Journal of Informatics Development, 4(1), 18–26. https://doi.org/10.30741/jid.v4i1.1758